Master 167 année

Faculté Université

des Sciences

& Techniques ‘ : ‘ de Limoges Dév. GPGPU
TD n°1

Programmation GPGPU & CUDA
mummmm Les notions de «threads », «blocks » et de «grille »
1- a. Expliquez comment passer d’un tableau a deux dimensions a un tableau a une dimension ?

b. Soit un tableau de 100 éléments.
Si chaque thread CUDA acceéde a une case différente de ce tableau dans le code du « kernel » exécuté,
comment 1’acces a la mémoire va-t-il étre fait ?
2 — Soit le source suivant :

l|#define N 10
2
3|_global void add(int *a, int *b, int *c) {
4 int tid = blockIdx.x; /* handle the data at this index */
5/if (tid < N)
6 c[tid] = altid] + b[tid];
7}
8
9lint main(void) {
10 int a[N], Db[N], c[N];
11 int *dev_a, *dev_b, *dev_c;
12 /* allocation de la memoire sur le GPU */
13 cudaMalloc ((void**)&dev_a, N * sizeof(int)) ;
14 cudaMalloc((void**)&dev_b, N * sizeof (int)) ;
15 cudaMalloc ((void**)&dev_c, N * sizeof (int)) ;
16 /* f£fill the arrays 'a' and 'b' on the CPU */
17 for (int i=0; i<N; i++)
18 {
19 ali] = -1i;
20 bli] = 1 * 1i;
21 }
22 /* copie des tableaux a et b sur le GPU */
23 cudaMemcpy (dev_a, a, N * sizeof (int), cudaMemcpyHostToDevice) ;
24 cudaMemcpy (dev_b, b, N * sizeof (int), cudaMemcpyHostToDevice) ;
25 add<<<N, 1>>>(dev_a, dev_b, dev_c);
26
27 /* copie du tableau c depuis le GPU sur le CPU */
28 cudaMemcpy (¢, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost) ;
29 /* display the results */
30 for (int 1i=0; i<N; i++) {
31 printf("%d + %d = %d\n", al[il, b[il, cli]);
32 }
33 /* liberer la memoire allouee sur le GPU */
34 cudaFree(dev_a);
35 cudaFree(dev_b);
36 cudaFree (dev_c);
37 return 0;
38|}

a. A quoi sert blockIdx.x ? Comment est-il défini ?
b. Aquoisertleligne5if (tid < N) ?
c. Que fait le programme ? Décrivez le travail en terme de threads, de blocks et de grilles.

d. Que se passe-t-il si on lance le kernel avec 1’instruction suivante :

‘25‘ add<<<1l,N>>>(dev_a, dev_b, dev_c);

Est-ce qu’il faut modifier le code du kernel ?
Est-ce qu’il y a des limitations au nombre de threads par block ?

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU-TD n°I » version du 22 janvier 2026, rédigé avec ConTgXt — Don’t Panic ! 1/4

3 — Questions:
a. Que se passe-t-il si on veut faire la somme de vecteurs dont la taille est > 512 ? > 65535 ?

b. Soit la formule :
add « (N +127)/128,128 >»> (dev.a,dev_b,dev.c);

Que permet-elle de faire ?
c. Aquoicorrespond ’expression: int tid = threadIdx.x + blockIdx.x * blockDim.x; ?

d. etlexpression: blockDim.x * gridDim.x

l|#define N 32768
2|_global___ void add(int *a, int *b, int *c) {
3 int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 while (tid < N) {
5 c[tid] = a[tid] + b[tid];
6 tid += blockDim.x * gridDim.x;
7 }
8|}
9lint main(void)
10|{
11 int a[N], b[N], c[N];
12 int *dev_a, *dev_b, *dev_c;
13 /* allocation de la memoire sur le GPU */
14 cudaMalloc((void**)&dev_a, N * sizeof (int));
15 cudaMalloc ((void**)&dev_b, N * sizeof (int));
16 cudaMalloc((void**)&dev_c, N * sizeof (int));
17 /* remplissage des tableaux a et b sur le CPU */
18 for (int i=0; i<N; i++)
19 { alil] = i;
20 bf{i] =1 * i; }
21 /* copie des tableaux a et b sur le GPU */
22 cudaMemcpy (dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice) ;
23 cudaMemcpy (dev_Db, b, N * sizeof (int), cudaMemcpyHostToDevice) ;
24 add<<<128,128>>>(dev_a, dev_b, dev_c);
25 /* copie du tableau c depuis le GPU sur le CPU */
26 cudaMemcpy (¢, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
27
28 for (int 1i=0; i<N; i++) {
29 printf("$d + %d = %d\n", ali], bli], cli]);
30 }
31 /* liberer la memoire allouee sur le GPU */
32 cudaFree (dev_a);
33 cudaFree (dev_b);
34 cudaFree (dev_c);
35 return 0;
36|}

d. Que fait le programme ?
e. A quoi sert la ligne 6 ?
f. Comment va se dérouler I’exécution suivant la grille définie en ligne 24 ?

mmmmm Mémoire partagée et synchronisation

4 — Soit le produit scalaire de deux vecteurs :
(X1,X2,%3,X4).(¥1, 25 Y3, Y4) = X1Y1 + X2Y2 +X3Y3 + X4V

a. Donnez la taille de la grille pour une taille de données de 33 % 1024 et une taille de block de 256 threads.

b. Voici une premiere version du kernel pour faire I’opération :
1L__global__ void mult (int *a, int *b, int *c) {
2] int tid = threadIdx.x + blockIdx.x * blockDim.x;
3] while (tid < N) {

4| cltid] = a[tid] * bltid];

5] tid += blockDim.x * gridDim.x;
6| }

71}

Que reste-t-il a faire ?
Est-il possible de le faire sur le GPU ?
Comment s’y prendre de maniere efficace ?

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU-TD n°I » version du 22 janvier 2026, rédigé avec ConTgXt — Don’t Panic ! 2/4

e.

C.

Voici une seconde proposition :

1|__global__ void dot(float *a, float *b, float *c
2 _ shared__ float cache[threadsPerBlock];

3 int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 int cacheIndex = threadIldx.x;

5 float temp = 0;

6 while (tid < N) {

7 temp += al[tid] * b[tid];

8 tid += blockDim.x * gridDim.x;

9 }
10 // set the cache values
11 cache[cacheIndex] = temp;
12 }

Que reste-t-il a réaliser ?
Comment le faire ? Dans le GPU ?
Doit-on prendre des précautions ?

Cette opération ressemble-t-elle a une opération « courante » du parallélisme ?

Donnez une version complete de la proposition 2 la plus efficace possible ?

Quelle est la complexité de ce travail ?
Est-il possible de finaliser tout le traitement dans le GPU et pourquoi ?

Soient le code suivant :

l|lint i = blockDim.x/2; while (i != 0) {
2 if (cachelIndex < 1i)
3 cache[cacheIndex] += cache[cachelIndex + i];
4 __syncthreads () ;
5 i /= 2; }
etle code:
l|lint i = blockDim.x/2; while (i != 0) {
2 if (cachelIndex < i) {
3 cache[cacheIndex] += cache[cachelIndex + i];
4 __syncthreads() ;
5 }
6 i/=2; 1}

Quelle(s) différence(s) ?
Les deux versions sont-elles correctes ?

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU-TD n°I » version du 22 janvier 2026, rédigé avec ConTgXt — Don’t Panic !

3/4

llconst int N = 33 * 1024;
2|const int threadsPerBlock = 256;
3|const int blocksPerGrid = (N+threadsPerBlock-1) / threadsPerBlock;
4|__global__ void dot(float *a, float *b, float *c) {
5 __shared__ float cache[threadsPerBlock];
6 int tid = threadIdx.x + blockIdx.x * blockDim.x;
7 int cacheIndex = threadIdx.x;
8 float temp = 0; while (tid < N) {
9 temp += al[tid] * b[tid];
10 tid += blockDim.x * gridDim.x;
11 }
12 // set the cache values
13 cache[cacheIndex] = temp;
14 // synchronize threads in this block
15 __syncthreads () ;
16 // for reductions, threadsPerBlock must be a power of 2 because Of‘J
the following code
17 int i = blockDim.x/2;
18 while (i != 0) {
19 if (cacheIndex < 1i)
20 cache[cacheIndex] += cache[cachelIndex + i];
21 __syncthreads () ;
22 i/=2;
23 }
24 if (cacheIndex == 0) c[blockIdx.x] = cache[0];
25 }
26lint main(void) {

27 float *a, *b, c, *partial_c;
28 float *dev_a, *dev_b, *dev_partial_c;
29 // allocate memory on the CPU side

30 a = (float*)malloc(N*sizeof (float));

31 b = (float*)malloc(N*sizeof (float));

32 partial_c = (float*)malloc(blocksPerGrid*sizeof (float));

33 // allocate the memory on the GPU

34 cudaMalloc((void**)&dev_a, N*sizeof (float));

35 cudaMalloc ((void**) &dev_b, N*sizeof (float));

36 cudaMalloc((void**)&dev_partial_c, blocksPerGrid*sizeof (float));
37 // fill in the host memory with data

38 for (int i=0; i<N; i++) {

39 alil] = 1i;

40 b[i] = i*2; }

41 // copy the arrays ‘a’ and ‘b’ to the GPU

42 cudaMemcpy (dev_a, a, N*sizeof (float), cudaMemcpyHostToDevice) ;
43 cudaMemcpy (dev_b, b, N*sizeof (float), cudaMemcpyHostToDevice) ;
44

45 dot<<<blocksPerGrid, threadsPerBlock>>>(dev_a, dev_b, dev_partial_c);
46
47 // copy the array 'c' back from the GPU to the CPU

48 cudaMemcpy(partial_c, dev_partial_c, blocksPerGrid*sizeof (float), cu‘J
daMemcpyDeviceToHost) ;

49 // finish up on the CPU side

50 c = 0;

51 for (int i=0; i<blocksPerGrid; i++) {

52 c += partial_cl[i];

53 }

54 printf ("Result), : %$f\n", c);
55 // free memory on the GPU side

56 cudaFree (dev_a);

57 cudaFree (dev_b);

58 cudaFree(dev_partial_c);

59 // free memory on the CPU side
60 free(a);

61l free(b);

62 free(partial_c);

63|}

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU-TD n°I » version du 22 janvier 2026, rédigé avec ConTgXt — Don’t Panic ! 4/4

