
Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU–TD n°1 » version du 22 janvier 2026, rédigé avec ConTEXt – Don’t Panic ! 1/4

Master1èreannée

Dév.GPGPU

TD n°1

Programmation GPGPU & CUDA

Les notions de « threads », « blocks » et de « grille »

1 – a. Expliquez comment passer d’un tableau à deux dimensions à un tableau à une dimension ?

b. Soit un tableau de 100 éléments.
Si chaque thread CUDA accède à une case différente de ce tableau dans le code du « kernel » exécuté,
comment l’accès à la mémoire va-t-il être fait ?

2 – Soit le source suivant :

1 #define N 10
2
3 __global__ void add(int *a, int *b, int *c) {
4 int tid = blockIdx.x; /* handle the data at this index */
5 if (tid < N)
6 c[tid] = a[tid] + b[tid];
7 }
8
9 int main(void) {

10 int a[N], b[N], c[N];
11 int *dev_a, *dev_b, *dev_c;
12 /* allocation de la memoire sur le GPU */
13 cudaMalloc((void**)&dev_a, N * sizeof(int)) ;
14 cudaMalloc((void**)&dev_b, N * sizeof(int)) ;
15 cudaMalloc((void**)&dev_c, N * sizeof(int)) ;
16 /* fill the arrays 'a' and 'b' on the CPU */
17 for (int i=0; i<N; i++)
18 {
19 a[i] = -i;
20 b[i] = i * i;
21 }
22 /* copie des tableaux a et b sur le GPU */
23 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
24 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
25 add<<<N,1>>>(dev_a, dev_b, dev_c);
26
27 /* copie du tableau c depuis le GPU sur le CPU */
28 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
29 /* display the results */
30 for (int i=0; i<N; i++) {
31 printf("%d + %d = %d\n", a[i], b[i], c[i]);
32 }
33 /* liberer la memoire allouee sur le GPU */
34 cudaFree(dev_a);
35 cudaFree(dev_b);
36 cudaFree(dev_c);
37 return 0;
38 }

a. À quoi sert blockIdx.x ? Comment est-il défini ?

b. À quoi sert le ligne 5 if (tid < N) ?

c. Que fait le programme ? Décrivez le travail en terme de threads, de blocks et de grilles.

d. Que se passe-t-il si on lance le kernel avec l’instruction suivante :
25 add<<<1,N>>>(dev_a, dev_b, dev_c);

Est-ce qu’il faut modifier le code du kernel ?
Est-ce qu’il y a des limitations au nombre de threads par block ?

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU–TD n°1 » version du 22 janvier 2026, rédigé avec ConTEXt – Don’t Panic ! 2/4

3 – Questions :
a. Que se passe-t-il si on veut faire la somme de vecteurs dont la taille est > 512 ? > 65535 ?

b. Soit la formule :
𝑎𝑑𝑑 ⋘ (𝑁 + 127)/128, 128 ⋙ (𝑑𝑒𝑣 𝑎, 𝑑𝑒𝑣 𝑏, 𝑑𝑒𝑣 𝑐);
Que permet-elle de faire ?

c. À quoi correspond l’expression : int tid = threadIdx.x + blockIdx.x * blockDim.x; ?

d. et l’expression : blockDim.x * gridDim.x

1 #define N 32768
2 __global__ void add(int *a, int *b, int *c) {
3 int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 while (tid < N) {
5 c[tid] = a[tid] + b[tid];
6 tid += blockDim.x * gridDim.x;
7 }
8 }
9 int main(void)

10 {
11 int a[N], b[N], c[N];
12 int *dev_a, *dev_b, *dev_c;
13 /* allocation de la memoire sur le GPU */
14 cudaMalloc((void**)&dev_a, N * sizeof(int));
15 cudaMalloc((void**)&dev_b, N * sizeof(int));
16 cudaMalloc((void**)&dev_c, N * sizeof(int));
17 /* remplissage des tableaux a et b sur le CPU */
18 for (int i=0; i<N; i++)
19 { a[i] = i;
20 b[i] = i * i; }
21 /* copie des tableaux a et b sur le GPU */
22 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
23 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
24 add<<<128,128>>>(dev_a, dev_b, dev_c);
25 /* copie du tableau c depuis le GPU sur le CPU */
26 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
27
28 for (int i=0; i<N; i++) {
29 printf("%d + %d = %d\n", a[i], b[i], c[i]);
30 }
31 /* liberer la memoire allouee sur le GPU */
32 cudaFree(dev_a);
33 cudaFree(dev_b);
34 cudaFree(dev_c);
35 return 0;
36 }

d. Que fait le programme ?

e. À quoi sert la ligne 6 ?

f. Comment va se dérouler l’exécution suivant la grille définie en ligne 24 ?

Mémoire partagée et synchronisation

4 – Soit le produit scalaire de deux vecteurs :
(𝑥1, 𝑥2, 𝑥3, 𝑥4).(𝑦1, 𝑦2, 𝑦3, 𝑦4) = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 + 𝑥4𝑦4

a. Donnez la taille de la grille pour une taille de données de 33∗1024 et une taille de block de 256 threads.

b. Voici une première version du kernel pour faire l’opération :
1 __global__ void mult(int *a, int *b, int *c) {
2 int tid = threadIdx.x + blockIdx.x * blockDim.x;
3 while (tid < N) {
4 c[tid] = a[tid] * b[tid];
5 tid += blockDim.x * gridDim.x;
6 }
7 }

Que reste-t-il à faire ?
Est-il possible de le faire sur le GPU ?
Comment s’y prendre de manière efficace ?

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU–TD n°1 » version du 22 janvier 2026, rédigé avec ConTEXt – Don’t Panic ! 3/4

c. Voici une seconde proposition :

1 __global__ void dot(float *a, float *b, float *c) {
2 __shared__ float cache[threadsPerBlock];
3 int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 int cacheIndex = threadIdx.x;
5 float temp = 0;
6 while (tid < N) {
7 temp += a[tid] * b[tid];
8 tid += blockDim.x * gridDim.x;
9 }

10 // set the cache values
11 cache[cacheIndex] = temp;
12 }

Que reste-t-il à réaliser ?
Comment le faire ? Dans le GPU ?
Doit-on prendre des précautions ?
Cette opération ressemble-t-elle à une opération « courante » du parallélisme ?

d. Donnez une version complète de la proposition 2 la plus efficace possible ?
Quelle est la complexité de ce travail ?
Est-il possible de finaliser tout le traitement dans le GPU et pourquoi ?

e. Soient le code suivant :
1 int i = blockDim.x/2; while (i != 0) {
2 if (cacheIndex < i)
3 cache[cacheIndex] += cache[cacheIndex + i];
4 __syncthreads();
5 i /= 2; }

et le code :
1 int i = blockDim.x/2; while (i != 0) {
2 if (cacheIndex < i) {
3 cache[cacheIndex] += cache[cacheIndex + i];
4 __syncthreads();
5 }
6 i /= 2; }

Quelle(s) différence(s) ?
Les deux versions sont-elles correctes ?

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, « Dév. GPGPU–TD n°1 » version du 22 janvier 2026, rédigé avec ConTEXt – Don’t Panic ! 4/4

1 const int N = 33 * 1024;
2 const int threadsPerBlock = 256;
3 const int blocksPerGrid = (N+threadsPerBlock-1) / threadsPerBlock;
4 __global__ void dot(float *a, float *b, float *c) {
5 __shared__ float cache[threadsPerBlock];
6 int tid = threadIdx.x + blockIdx.x * blockDim.x;
7 int cacheIndex = threadIdx.x;
8 float temp = 0; while (tid < N) {
9 temp += a[tid] * b[tid];

10 tid += blockDim.x * gridDim.x;
11 }
12 // set the cache values
13 cache[cacheIndex] = temp;
14 // synchronize threads in this block
15 __syncthreads();

16 // for reductions, threadsPerBlock must be a power of 2 because of
the following code

17 int i = blockDim.x/2;
18 while (i != 0) {
19 if (cacheIndex < i)
20 cache[cacheIndex] += cache[cacheIndex + i];
21 __syncthreads();
22 i /= 2;
23 }
24 if (cacheIndex == 0) c[blockIdx.x] = cache[0];
25 }
26 int main(void) {
27 float *a, *b, c, *partial_c;
28 float *dev_a, *dev_b, *dev_partial_c;
29 // allocate memory on the CPU side
30 a = (float*)malloc(N*sizeof(float));
31 b = (float*)malloc(N*sizeof(float));
32 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));
33 // allocate the memory on the GPU
34 cudaMalloc((void**)&dev_a, N*sizeof(float));
35 cudaMalloc((void**)&dev_b, N*sizeof(float));
36 cudaMalloc((void**)&dev_partial_c, blocksPerGrid*sizeof(float));
37 // fill in the host memory with data
38 for (int i=0; i<N; i++) {
39 a[i] = i;
40 b[i] = i*2; }
41 // copy the arrays ‘a’ and ‘b’ to the GPU
42 cudaMemcpy(dev_a, a, N*sizeof(float), cudaMemcpyHostToDevice);
43 cudaMemcpy(dev_b, b, N*sizeof(float), cudaMemcpyHostToDevice);
44
45 dot<<<blocksPerGrid,threadsPerBlock>>>(dev_a, dev_b, dev_partial_c);
46
47 // copy the array 'c' back from the GPU to the CPU

48 cudaMemcpy(partial_c, dev_partial_c, blocksPerGrid*sizeof(float), cu
daMemcpyDeviceToHost);

49 // finish up on the CPU side
50 c = 0;
51 for (int i=0; i<blocksPerGrid; i++) {
52 c += partial_c[i];
53 }
54 printf("Result\,: %f\n", c);
55 // free memory on the GPU side
56 cudaFree(dev_a);
57 cudaFree(dev_b);
58 cudaFree(dev_partial_c);
59 // free memory on the CPU side
60 free(a);
61 free(b);
62 free(partial_c);
63 }

