

Routage dynamique avec RIP & OSPF

Routage à l'aide de RIP & OSPF — Extension du réseau d'interconnexion de la fiche de TP n°1

But de la simulation

- ▷ étendre le réseau proposé dans la fiche de TP n°1;
- ▷ configurer et déployer le protocole RIP dans cette nouvelle configuration ;
- ▷ étudier les paquets échangés du protocole RIP dans cette nouvelle configuration ;
- ▷ générer une panne due à la perte d'une liaison entre routeurs ;
- ▷ analyser les paquets échangés et le fonctionnement du protocole suite à la détection de la panne ;

Extension de la simulation :

- ★ on ajoute :
 - oun netns : «rout3 » sur lequel tournera le service « frr » ;
 - un switch que l'on nommera « resD »;
- * vous vérifierez que « rout 3 » est bien configuré.

Travail

- 1. vous finaliserez la configuration de la simulation étendue :
 - vous réaliserez la configuration de RIP sur « rout 3 » et « rout 4 »;
 - vous vérifierez que les tables de routage de « rout 3 » et « rout 4 » sont bien configurées ;
- 2. Par quel chemin est accessible le réseau 10.0.0.0/24 depuis l'hôte ? Est-ce normal ?
- 3. Questions sur le fonctionnement de RIP:
 - ♦ quel est la table de routage de « rout3 » ?
 - vous snifferez les paquets RIP reçu sur « rout1 » en provenance de « rout3 »:

- Existent-ils des différences entre la table de « rout 3 » et la table qu'il diffuse vers « rout 1 » ? Pourquoi ?
- 4. Vous intallerez la commande traceroute:

```
vterm
rezo@ishtar:~/$ sudo apt install traceroute
Vous exécuterez depuis « rout2 », la commande:
vterm
rezo@ishtar:~/$ netns rout2
rezo@ishtar:~/$ [rout2] traceroute 10.0.0.254
```

- Le résultat est-il correct?
- 5. Identifiez le nom des différentes interfaces et leur connexion pour « rout1 », « rout3 » et « rout4 »;
- 6. Installez les éléments de surveillance suivants :
 - sur «rout2», vous surveillerez sa configuration de routage:

```
rezo@ishtar:~/$ netns rout2
rezo@ishtar:~/$ [rout2] watch ip route
```

- sur «rout1», vous continuerez votre surveillance avec topdump;
- sur « rout 3 », où vous substituerez le nom de l'interface identifiée au paramètre INTERFACE :

vous créerez un « incident » de routage sur « rout 4 » :

```
🔲 — xterm -
```

🗖 🗕 xterm ·

```
rezo@ishtar:~/$ netns rout4
rezo@ishtar:~/$ [rout4] sudo ip link set dev rout4-eth1 down
```

Vous exécuterez depuis « rout 2 », la commande :

rezo@ishtar:~/\$ [rout2] traceroute 10.0.0.254

Le résultat est-il correct?

Que pouvez vous observez sur la capture par tcdump sur «rout3» lorsque l'interface sur «rout4» tombe?

Et sur « rout1 »?

xterm

- Combien de temps faut-il pour que « rout 2 » se rende compte du problème ?
- 7. En réactivant l'interface sur « rout 4 » :

rezo@ishtar:~/\$ [rout4] sudo ip 1 set dev rout4-eth1 up

Est-ce que l'hôte mets beaucoup de temps à se mettre à jour ? Pourquoi ?

8. Vous lancerez un « ping » depuis « rout2 » :

Vous ferez de nouveau tomber l'interface sur «rout4».

Combien de paquets i cmp sont perdus avant que la route ne soit rétablie?

Configuration et étude d'OSPF

Vous stopperez sur chaque netns, le service frr:

 \triangleright sur « rout l »:

🗖 — xterm -

rezo@ishtar:~/INFRA_LAB\$ [rout1] sudo /usr/lib/frr/frrinit.sh stop rout1

- \triangleright sur « *rout2* » :
- xterm

rezo@ishtar:~/INFRA_LAB\$ [rout2] sudo /usr/lib/frr/frrinit.sh stop rout2

 \triangleright sur « *rout3* »:

rezo@ishtar:~/INFRA_LAB\$ [rout3] sudo /usr/lib/frr/frrinit.sh stop rout3

 \triangleright sur « *rout4* »:

🔲 — xterm

🔲 — xterm

rezo@ishtar:~/INFRA_LAB\$ [rout4] sudo /usr/lib/frr/frrinit.sh stop rout4

Vous lancerez le script init_frr_ospf qui va configurer le lanceement du démon ospfd à la place du démon ripd.

🔲 — xterm

rezo@ishtar:~/INFRA_LAB\$./init_frr_ospf

Puis sur chaque netns vous lancerez les démons zebra et ospfd avec le service frr:

\triangleright sur « rout l » :

□— xterm ·

____ xterm

- xterm

xterm

rezo@ishtar:~/INFRA_LAB\$ [rout1] sudo /usr/lib/frr/frrinit.sh start rout1

 \triangleright sur « *rout2* » :

rezo@ishtar:~/INFRA_LAB\$ [rout2] sudo /usr/lib/frr/frrinit.sh start rout2

 \triangleright sur « *rout3* »:

rezo@ishtar:~/INFRA_LAB\$ [rout3] sudo /usr/lib/frr/frrinit.sh start rout3

 \triangleright sur « rout4 »:

In-

rezo@ishtar:~/INFRA_LAB\$ [rout4] sudo /usr/lib/frr/frrinit.sh start rout4

Vous vérifierez que sur chaque netns ospfd fonctionne en attente sur le port 2604 :

```
🔲 — xterm -
rezo@ishtar:~/INFRA_LAB$ [rout1] sudo ss -tlnp
State
Process
            Recv-Q
                         Send-Q
                                     Local Address:Port
                                                           Peer Address:Port
LISTEN
                                         127.0.0.1:2601
                                                                0.0.0:*
             0
users:(("zebra",pid=17327,fd=27))
LISTEN 0 3
users:(("ospfd",pid=17332,fd=12))
                                         127.0.0.1:2604
                                                                0.0.0:*
                                         127.0.0.1:2616
                                                                0.0.0:*
LISTEN
users:(("staticd",pid=17335,fd=12))
```

Ensuite, vous pourrez vous connecter pour configurer OSPF :

```
rezo@ishtar:~/INFRA_LAB$ [rout1] telnet 127.0.0.1 2604
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
Hello, this is FRRouting (version 8.1).
Copyright 1996-2005 Kunihiro Ishiguro, et al.
User Access Verification
```

Password:

Le mot de passe est zebra.

La procédure de configuration pour OSPF est la suivante :

- a. l'ensemble des routeurs va faire partie de l'« area 0 » ou le « backbone » ;
- b. chaque routeur va être identifié par un ID, exprimé sous la forme d'une adresse IP (si on laisse le routeur s'auto-configuré, il prend comme ID l'adresse de son interface interprétable numériquement sur 32 bits comme étant la plus grande):
 - rout1:1.1.1;
 - rout2:2.2.2;
 - rout3:3.3.3;
 - rout4:4.4.4;

Pour configurer l'ID par exemple sur rout1:

```
Router> enable
Router# configure terminal
Router(config)# router ospf
Router(config-router)# router-id 1.1.1.1
```

c. Pour configurer les réseaux à prendre en charge, par exemple sur rout2:

```
Router(config-router)# network 172.16.1.0/24 area 0
Router(config-router)# network 192.168.100.0/24 area 0
Router(config-router)# default-information originate
Router(config-router)# write file
Configuration saved to /etc/frr/rout1/ospfd.conf
```

Étude du fonctionnement d'OSPF :

* Pour vérifier le fonctionnement d'OSPF, par exemple sur rout2:

— xterm —			
Router# show ip ospf			
OSPF Routing Process, Router ID: 2.2.2.2			
Supports only single TOS (TOS0) routes			
This implementation conforms to RFC2328			
RFC1583Compatibility flag is disabled			
OpaqueCapability flag is disabled			
Initial SPF scheduling delay 0 millisec(s)			
Minimum hold time between consecutive SPFs 50 millisec(s)			
Maximum hold time between consecutive SPFs 5000 millisec(s)			
Hold time multiplier is currently 1			
SPF algorithm last executed 4m15s ago			
Last SPF duration 19 usecs			
SPF timer is inactive			
LSA minimum interval 5000 msecs			
Write Multiplier set to 20			
Refresh timer 10 secs			
Maximum multiple paths (ECMP) supported 256			
This router is an ASBR (injecting external routing information)			
Number of external LSA 0. Checksum Sum 0x00000000			
Number of opaque AS LSA 0. Checksum Sum 0x0000000			
Number of areas attached to this router: 1			
Area ID: 0.0.0.0 (Backbone)			
Number of interfaces in this area: Total: 2, Active: 2			
Number of fully adjacent neighbors in this area: 0			
Area has no authentication			
Number of ISA 1			
Number of router LSA 1. Checksum Sum 0x00007b12			
Number of network LSA 0. Checksum Sum 0x00000000			
Number of summary LSA 0. Checksum Sum 0x0000000			
Number of ASBR summary LSA 0. Checksum Sum 0x00000000			
Number of NSSA LSA 0. Checksum Sum 0x00000000			
Number of opaque link LSA 0. Checksum Sum 0x0000000			
Number of opaque area LSA 0. Checksum Sum 0x0000000			

* Pour voir la gestion des interfaces, par exemple sur « rout3 » :

🔲 — xterm -Router# show ip ospf interface rout3-eth0 is up ifindex 29, MTU 1500 bytes, BW 10000 Mbit < UP, BROADCAST, RUNNING, MULTICAST> Internet Address 10.10.10.253/24, Broadcast 10.10.10.255, Area 0.0.0.0 MTU mismatch detection: enabled Router ID 3.3.3.3, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State Backup, Priority 1 Designated Router (ID) 1.1.1.1 Interface Address 10.10.10.254/24 Backup Designated Router (ID) 3.3.3.3, Interface Address 10.10.10.253 Multicast group memberships: OSPFAllRouters OSPFDesignatedRouters Timer intervals configured, Hello 10s, Dead 40s, Wait 40s, Retransmit 5 Hello due in 6.636s Neighbor Count is 1, Adjacent neighbor count is 1 rout3-eth1 is up ifindex 31, MTU 1500 bytes, BW 10000 Mbit <UP, BROADCAST, RUNNING, MULTICAST> Internet Address 10.0.0.254/24, Broadcast 10.0.0.255, Area 0.0.0.0 MTU mismatch detection: enabled Router ID 3.3.3.3, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 3.3.3.3 Interface Address 10.0.0.254/24 Backup Designated Router (ID) 4.4.4.4, Interface Address 10.0.0.253 Multicast group memberships: OSPFAllRouters OSPFDesignatedRouters Timer intervals configured, Hello 10s, Dead 40s, Wait 40s, Retransmit 5 Hello due in 2.886s Neighbor Count is 1, Adjacent neighbor count is 1

* Pour voir les relations d'adjacence sur rout3:

xterm Router# show ip ospf neighbor Neighbor ID Pr RXmtL RqstL DBsmL Pri State Dead Time Address Interface 35.456s 10.10.10.254 1.1.1.1 1 Full/DR rout3-eth0:10.10.10.253 Full/Backup 34.472s 10.0.0.253 4.4.4.4 1 rout3-eth1:10.0.0.254 0 0 0

* Pour voir les routes, sur « *rout3* » :

	xterm		
Router# show ip ospf route			
======= OSPF network routing table ====================================			
Ν	10.0.0/24	[10] area: 0.0.0.0 directly attached to rout3-eth1	
Ν	10.10.10.0/24	[10] area: 0.0.0.0 directly attached to rout3-eth0	
Ν	10.10.20.0/24	[20] area: 0.0.0.0 via 10.10.10.254, rout3-eth0	
Ν	172.16.1.0/24	[20] area: 0.0.0.0 via 10.10.10.254, rout3-eth0	
Ν	192.168.100.0/24	[20] area: 0.0.0.0 via 10.0.0.253, rout3-eth1	
===== R	OSPF router ro 2.2.2.2	Duting table ====================================	
======================================			

* Pour voir la base de donnée d'un routeur :

```
🔲 — xterm -
Router# show ip ospf database
       OSPF Router with ID (4.4.4.4)
                Router Link States (Area 0.0.0.0)
Link ID
                ADV Router
                                Age Seq#
                                                CkSum Link count
                                406 0x80000008 0xd458 3
1.1.1.1
               1.1.1.1
                                329 0x80000007 0xfc0b 2
2.2.2.2
               2.2.2.2
3.3.3.3
               3.3.3.3
                                337 0x80000006 0xac1c
                                                      2
4.4.4.4
               4.4.4.4
                                328 0x80000006 0x71f2 2
                Net Link States (Area 0.0.0.0)
Link ID
                ADV Router
                                Age Seq#
                                                CkSum
               3.3.3.3
                                 336 0x80000001 0xcd5b
10.0.0.254
10.10.10.254
                                 407 0x80000001 0x9c8c
               1.1.1.1
172.16.1.254
               2.2.2.2
                                 564 0x80000001 0x4544
192.168.100.2532.2.2.2
                                329 0x80000001 0x442a
```

```
Travail
```

In-

xterm

xterm

xterm

- 1. Quel est le coût d'une laison par défaut ?
- 2. Vous snifferez les paquets échangés par OSPF à l'aide de la commande suivante (OSPF est associé au protocole 89 dans le datagramme IP) :

3. Sur rout2 vous essaierez la commande traceroute:

root@ishtar:~\$ [rout2] traceroute 10.0.0.254

Quel est le chemin emprunté ?

Consultez la table de routage, est-ce conforme?

4. Vous modifierez le coût associé au lien de «rout4» sur son interface rout4-eth1:

Vous ferez de même pour l'interface connectée à « resC » sur rout2. Pourquoi doit-on faire la modification sur « rout4 » et rout2 ? Est-ce que le traceroute donne le même résultat ? La table de routage a-t-elle été modifiée ? Est-ce conforme à la théorie ?

5. Vous rétablirez les coûts sur rout4 et sur rout2.

En recommançant une surveillance d'affichage de la table de rout2:

root@ishtar:~\$ [rout2] watch ip route

Vous ferez tomber l'interface rout4-eth1 sur rout4.

root@ishtar:~\$ [rout4] sudo ip link set dev rout4-eth1 down

Est-ce que la modification est rapide?

Vous réactiverez l'interface et vous lancerez un ping depuis rout2:

root@ishtar:~\$ [rout2] ping 10.0.0.254

Puis de nouveau de désactiver l'interface : combien de paquets icmp sont perdus ?