Master 167 année

Faculté Université

des Sciences

& Techniques ‘ ‘ de Limoges Sécurité des usages TIC

TP n°2

Manipulation des éléments de sécurité

mummmm Présentation d’openSSL
La bibliotheque openSSL est une boite a outils cryptographiques servant de référence :
* une bibliotheque de programmation en C permettant de réaliser des applications client/serveur sécuri-
sées s’appuyant sur SSL/TLS.
* une commande en ligne (openssl) permettant :
la création de clés RSA, ECDSA, PQC;
la création de certificats X509 ;
le calcul d’empreintes (MDS5 (collisionnable), SHA256/SHA-3, RIPEMD160, . . .);
le chiffrement et déchiffrement (AES, ChaCha20-poly1305,...);
la réalisation de tests de clients et serveurs SSL/TLS ;
o la signature et le chiffrement de courriers (S/MIME).

Pour connaitre toutes les fonctionnalités d’openSSL : jman openssl|
————— 1
Pour exécuter une commande : ‘open ssl <commande> <options> ‘

O 0O O 0O 0

1 - Regardez les possibilités offertes par openSSL :
a. obtenez la liste des algorithmes de chiffrement supportés par openSSL avec la commande :

‘openssl enc —help ‘

b. essayez de chiffrer, puis déchiffrer et enfin, de vérifier le chiffrement de la maniére suivante :
Pour chiffrer le fichier « toto » avec 1’algorithme AES en mode CBC, avec une clé générée par mot de
passe, le document chiffré étant stocké dans le fichier toto.chiffre, on utilise la commande :

‘openssl enc —aes—-256-cbc —-in toto -out toto.chiffre -pbkdf2 —-iter 100000

Vous essaierez la commande simplifiée :

openssl enc —aes-256-cbc —-in toto -out toto.chiffre,
que vous retourne-t-elle ?

Pour déchiftrer le message chiffré, on utilise la commande :

‘openssl enc —aes—-256-cbc -d -in toto.chiffre -out toto.dechiffre

Et enfin pour la vérification :

biff toto toto.dechiffre ‘

c. Commentez chacune des options des commandes utilisées pour le chiffrement et le déchiffrement.
d. affichez le contenu du chiffré :

‘xxd toto.chiffre ‘

Qu’est-ce que c’est que cette en-téte ? Qu’est-ce que fait I’option ~nosalt ?
s mmmm Empreinte
Une empreinte est un résumé de taille fixe, souvent exprimée en hexadécimal, calculé pour tout fichier de
taille variable donné en entrée. La particularité de cette empreinte est :
* de ne pas permettre de retrouver le fichier initial a partir de cette empreinte.
On parle de «one-way » fonction ou de fonction non inversible.
* de fournir des valeurs tres différentes pour des fichiers similaires (ne différant que d’un octet, voir méme
que d’un seul bit). Ici, c’est de la notion d’absence de collision dont on parle.
2 — Récupérez le fichier binaire de la bibliotheque OpenSSL (disponible actuellement en version 3.6.1). Vous
le trouverez a ’'URL : http://www.openssl.org/source/.
Afin de vous assurer que vous avez recu correctement le logiciel, une empreinte au format SHA-256,
«Secure Hash Algorithm 256 » est donnée ol vous avez trouvé le fichier a télécharger.

Vous pouvez alors calculer I’empreinte du fichier téléchargé a I’aide de la commande

openssl dgst -shal < openssl-3.6.1l.tar.gz

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Sécurité des usages TIC— TP n°2 » version du 3 février 2026, rédigé avec ConTgXt — Don’t Panic ! 1/4

a. Faites de méme pour SHA-256, « Secure Hash Algorithm 256 ».

En quoi, le calcul de cette empreinte permet d’établir la confiance dans 1’archive téléchargée ?
c. Renommez I’archive précédente.

Est-ce que cela change quelque chose dans le calcul de I’empreinte ?
d. Ajoutez un ou plusieurs caracteres a I’archive précédente a I’aide de la commande :

%cho 'toto' >> openssl-3.6.1l.tar.gz

Que se passe-t-il maintenant ?
e. Programmez un petit programme Python permettant :
o de copier un fichier en supprimant un ou plusieurs caracteres n’importe ol ;
o de modifier la valeur d’un caracteére n’importe ol (par exemple en ne modifiant qu’un seul bit de sa
représentation binaire).
Essayez ce programme sur I’archive originale.
Quels sont les effets sur le calcul de I’empreinte ?

Rappels : 11 est possible de controler le programme de calcul d’empreinte a 1’aide d’un programme Python
de la maniere suivante :

import subprocess

commande_digest = subprocess.Popen(['openssl', 'dgst', '-shal'l],
stdin=subprocess.PIPE, stdout=subprocess.PIPE)

commande_digest.stdin.write ("Bonjour tout le monde")

commande_digest.stdin.close ()

sortie = commande_digest.stdout.read ()
print sortie

Chiffrement/déchiffrement

—| Exemple d’utilisation des commandes I

Cryptographie symétrique :
o Chiffrement d’un fichier

openssl enc -aes256-cbc —-in donneeclair.txt -out donneechiffre.enc -pbkdf2
—iter 100000

o Déchiffrement d’un fichier

openssl enc -aes256-cbc -d -in fichierchiffre.enc -out fichierclair.txt

Cryptographie asymétrique :
o Génere une clé privée

RSA moderne (recommandé 3072 ou 4096 bits en 2026)

openssl genpkey —-algorithm RSA -pkeyopt rsa_keygen_bits:4096 -out rsa_priv.pem
ECDSA ou Ed25519 (plus efficace que RSA)

openssl genpkey —-algorithm ED25519 -out ed25519_priv.pem

ML-KEM-768 (Kyber-like, post-quantique)

openssl genpkey —-algorithm ML-KEM-768 -out mlkem priv.pem

ML-DSA-65 (Dilithium niveau 3)

openssl genpkey —-algorithm ML-DSA-65 -out mldsa_priv.pem

o Génere une clé publique dérivée d’une clé privée

openssl pkey —-in algo_priv.pem -pubout -out algo_pub.pem

o Chiffre avec une clé RSA publique le fichier

openssl pkeyutl —-encrypt -pubin -inkey rsaclefpublique.pem

—in fichierclair.txt —-out fichierchiffre.enc

o Déchiffre avec la clé RSA privée le fichier

openssl pkeyutl -decrypt —-inkey rsaclefprivee.pem —-in fichierchiffre.enc

—-out fichierclair.txt

Depuis OpenSSL 3.x, privilégiez genpkey pour tous les algorithmes asymétriques (RSA, EC, EADSA, ML-
KEM, ML-DSA...). Les commandes spécifiques (genrsa, ecparam -genkey, etc.) sont «legacy ».
Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Sécurité des usages TIC— TP n°2 » version du 3 février 2026, rédigé avec ConTgXt — Don’t Panic ! 2/4

3 — Allez sur la rubrique de 'UE sur http://p-fb.net/ et récupérez le fichier de signature a I’extension
.vct.
a. A quoi ressemble le contenu du fichier ?
b. Comment «récupérer » le contenu image sous une forme utilisable ?

4 — Manipulation du chiffrement symétrique :

a. Chiffrez un fichier quelconque que vous aurez choisi, avec 1’algorithme de votre choix et dans le mode
de votre choix, puis déchiffrez-le.

b. Comparez les tailles des fichiers clairs et chiffrés.
Donnez une explication sur la différence de ces tailles.

c. Tentez de déchiffrer un cryptogramme en utilisant un mauvais mot de passe.
Comment réagit openSSL ?

d. Chiffrez avec le méme mot de passe et méme algorithme de chiffrement, un méme fichier deux fois
dans deux fichiers de sortie distincts. Comparez la taille et le contenu de ces deux fichiers obtenus.
Expliquez ce que vous observez ?

5 — Manipulation du chiffrement asymétrique avec RSA :
a. Générez une clé privée de taille 4096. Sous quelle forme la clé est-elle fournie ?
b. Comment les deux clés (publique et privée) sont liées ?
c. Etudiez le contenu de la clé privée a ’aide de la commande :

kpenssl rsa —in cle_privee.pem -text ‘

Comparez au codage de I’information au format ASN.1 (regarder dans Wikipedia sa définition) :

@penssl asnlparse -in cle_privee.pem ‘

Etudiez le contenu de la clé publique avec la commande :

%penssl rsa —inform PEM -pubin -in rsaclefpublique.pem -text

et:

kpenssl asnlparse —-in rsaclefpublique.pem ‘

Que pouvez vous en dire ?
Chiftrez un document et échangez le avec un collegue. Comment peut-il le déchiffrer ?
Pouvez vous générez la méme clé que celle de I’'un de vos collegues ?
f. Quelles sont les avantages du chiffrement asymétrique par rapport au chiffrement symétrique lors de
I’échange de document confidentiel entre deux interlocuteurs ? Trois et plus ?
g. Ce systeme est-il facilement généralisable a tous les utilisateurs d’Internet qui voudrait bénéficier de la
confidentialité dans leurs échanges ? Pourquoi ?
mmmmm Signature

N

o Signe, avec la clé privée, le fichier fichier.txt en signature.sig

@penssl pkeyutl -sign —-inkey rsaclefprivee.pem —-in fichier.txt -out signature.sig ‘

o Vérifie, avec la clé publique, la signature et sortie dans fichier.txt

kpenssl pkeyutl -verify -pubin -inkey rsaclefpublique.pem -in signature.sig -out f#chier.txt

6 — Pouvez vous vérifiez 1’archive d’openssl récupéré précédemment avec pgp :
a. récupérez la signature (fichier d’extension . asc) sur la page web d’openssl ;
b. récupérez la clé publique a la fin de la page web (extension .asc);
c. utilisez les commandes suivantes :

$ gpg ——no-default-keyring --keyring ./pubkeys.gpg —--trust-model always
——import pubkeys.asc
$ gpg —-—no-default-keyring --keyring ./pubkeys.gpg —--trust-model always

—--verify openssl-3.6.l.tar.gz.asc openssl-3.6.l.tar.gz

7 — Est-ce qu’il serait possible de faire de la signature a I’aide d’un chiffrement symétrique ?
Proposez une méthodologie.

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Sécurité des usages TIC— TP n°2 » version du 3 février 2026, rédigé avec ConTgXt — Don’t Panic ! 3/4

9_

Acces SSH sécurisé par clé asymétrique

Pour utiliser une machine & distance, on utilise la commande ssh, «secure shell », qui permet de chiffrer
les données échangées entre le poste local et la machine distante.

Cette commande réalise :
* une connexion a la machine distante ;
* négocie I'utilisation d’algorithmes de chiffrement/authentification ;
* authentifie 1’utilisateur aupres du serveur :
o par l'utilisation de login/mot de passe ;
o par I'utilisation du chiffrement asymétrique.

Pour utiliser 1’authentification par chiffrement asymétrique, il est nécessaire de créer un couple de clés
(publique/privée), puis de mettre :

> la clé publique sur les machines sur lesquelles on veut se connecter ;

> la clé privée sur la machine depuis laquelle on veut se connecter.

Le répertoire ou mettre les clés est « ~/ . ssh/ ».

La commande ssh-keygen permet de créer les clés dans le format accepté par openssh (il est également
possible de «traduire » une clé donnée en format d’openSSL).

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/toto/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/toto/.ssh/id_rsa.
Your public key has been saved in /home/toto/.ssh/id_rsa.pub.
The key fingerprint is:
62:18:c8:€2:27:13:e0:e9:0e:23:15:c3:a7:47:1f:7c

Vous pouvez remarquer que l'outil vous fournit une empreinte de la clé afin de pouvoir lidentifier humai-
nement plus facilement.

Vous récupérerez I’empreinte de la clé du serveur p—fb . net (ligne contenant par Server Host Key):

F ssh -v toto@p-fb.net ‘

Qu’elle est I’empreinte de la clé ?
Est-elle identique &: « SHA256: 0fMSZZk2EOVjAbiATXaM7ZMX7CEF £ §25u5N0+4D1Ggg »

Vous essaierez de vous connecter sur la machine agate.unilim. fr (ne fonctionne que depuis le réseau
de la FST):
‘s ssh —v votre_nom_de_compte@agate.unilim.fr ‘ Vous pouvez également utiliser 'option

«—vv»dlaplace de « —v ».

A quelle clé est liée cette empreinte « SHA256: BHRaT02VNUUPq+2VyweAkt 069euENhvxk1F 3nLpWHGO » ?

«Comment gicher son entropie » ou «le jeu de la vie avec ssh» :
a. Essayez la commande suivante :

Fsh—keygen -t rsa -f /tmp/ma_cle_temp -N "" | tail -n 11 ; rm /tmp/ma_cle_temp

Que fait-elle ?

b. Sachant que la commande « /bin/echo -e "\x1Bc" » efface I’écran de sortie, programmez un
programme réalisant en boucle la génération d’une clé puis qui efface I’écran et recommence...

c. ..etd’ailleurs quels liens avec le «jeu de la vie » de John Conway ?

d. ...etenfin c’est quoi cette «entropie » ?

Resp. UE : P-F. Bonnefoi, http://p-fb.net/, «Sécurité des usages TIC— TP n°2 » version du 3 février 2026, rédigé avec ConTgXt — Don’t Panic ! 4/4

