

Master 2^{nde} année

TMC

TP nº4

MQTT avec connexion sécurisée par authentification du client

Interconnexion ESP8266/ATECC608A

On utilisera le bus I²C, c-à-d 3 fils : GND, SCL et SDA.

ESP8266	ATECC508A
3.3v	VCC
GND	GND
D5	SCL
D6	SDA

Installation de Mongoose OS et d'une application de démonstration

Nous développerons en C directement en ligne de commande, ce qui nous permettra d'économiser la place prise par l'interprète Javascript de la version « développement Web » de Mongoose OS.

Droits d'accès au device

xterm .

□-\$ ls -la /dev/ttyUSB0 crw-rw---- 1 root dialout 188, 0 Nov 27 10:56 /dev/ttyUSB0 \$ sudo usermod -aG dialout \$USER

Vous ajouterez le groupe 'auquel appartient le /dev/ttyUSBx à votre utilisateur.

Site de l'OS: https://mongoose-os.com

```
$ sudo add-apt-repository ppa:mongoose-os/mos
```

```
$ sudo apt update
```

\$ sudo apt install mos

\$ mos --help

🔲 — xterm .

Installation de docker avec transfert des droits d'exécution à l'utilisateur :

```
xterm
sudo apt install docker.io
$ sudo groupadd docker
```

```
$ sudo usermod -aG docker $USER
```

Pour que votre entrée dans le groupe docker soit prise en compte, il vous faut vous déconnecter/reconnecter.

ATTENTION

L'installation de docker s'accompagne de la reconfiguration de votre firewall.

Faites attention que les « policies » en FORWARD laisse bien passer votre trafic en provenance de votre Raspberry Pi.

🗖 — xterm

\$ sudo iptables -t filter -P FORWARD ACCEPT

Compilation d'un firmware

xterm

Installation d'une application de démonstration :

\$ git clone https://github.com/mongoose-os-apps/empty my-app Vous éditerez le manifeste de l'application de démonstration (fichier « mos.yml »): author: mongoose-os description: A Mongoose OS app skeleton version: 1.0 libs_version: \${mos.version} modules version: \${mos.version} mongoose_os_version: \${mos.version} # Optional. List of tags for online search. tags: - C # List of files / directories with C sources. No slashes at the end of dir names. sources: - src # List of dirs. Files from these dirs will be copied to the device filesystem filesystem: - fs build_vars: MGOS_MBEDTLS_ENABLE_ATCA: 1 config schema: - ["debug.level", 3] - ["sys.atca.enable", "b", true, {title: "Enable t] - ["i2c.enable", "b", true, {title: "Enable I2C"}] "b", true, {title: "Enable the chip"}] - ["sys.atca.i2c_addr", "i", 0x60, {title: "I2C address of the chip"}]
- ["wifi.ap.enable", "b", false, {title: "Enable"}] ["wifi.sta.enable", "b", true, {title: "Connect to existing WiFi"}] - ["wifi.sta.ssid", "s", "IoT", {title: "SSID"}] ["wifi.sta.pass", "s", "12344321", {title: "Password", type: "password"}] - ["http.enable", true] ["http.listen_addr", ":443"] - ["http.ssl_cert", "ecc.crt.pem"] - ["http.ssl_key", "ATCA:0"] libs: - origin: https://github.com/mongoose-os-libs/boards - origin: https://github.com/mongoose-os-libs/ca-bundle origin: https://github.com/mongoose-os-libs/rpc-service-config - origin: https://github.com/mongoose-os-libs/rpc-service-fs - origin: https://github.com/mongoose-os-libs/rpc-uart - origin: https://github.com/mongoose-os-libs/atca origin: https://github.com/mongoose-os-libs/wifi # Used by the mos tool to catch mos binaries incompatible with this file format manifest_version: 2017-09-29

Ici, on demande à l'ESP8266 de:

- ▷ activer le composant ATECC608;
- ▷ se connecter au point d'accès SSID: IoT, PWD: 1234321;
- ▷ activer un serveur http protégé par TLS utilisant un certificat basé ECC dont la clé privée est gérée par le composant ATECC608;

Compilation de l'application de démonstration :

L'utilisation de l'option --local permet d'installer un **container** pour disposer du compilateur et des bibliothèques nécessaires à la compilation de Mongoose OS (dans le cas contraire votre application est compilée dans le Cloud...) \Rightarrow cela peut prendre du temps lors de la première compilation.

Pour automatiser la procédure de compilation et de flashage :

```
□ — xterm
mos build --local --platform esp8266 && mos flash && mos console
```

Sur le Raspberry Pi, où vous aurez installé le script_ap:

```
xterm
pi@raspberrypi:~ $ ./script_ap
hostapd: no process found
net.ipv4.ip_forward = 1
Configuration file: /tmp/hostapd_config
Using interface wlan0 with hwaddr b8:27:eb:8d:bc:f1 and ssid "IoT"
wlan0: interface state UNINITIALIZED->ENABLED
wlan0: AP-ENABLED
dnsmasq: started, version 2.85 cachesize 150
dnsmasq: compile time options: IPv6 GNU-getopt DBus no-UBus i18n IDN2 DHCP DHCPv6
no-Lua TFTP conntrack ipset auth cryptohash DNSSEC loop-detect inotify dumpfile
dnsmasq-dhcp: DHCP, IP range 10.33.33.100 -- 10.33.33.150, lease time 1h
dnsmasg: reading /etc/resolv.conf
dnsmasq: using nameserver 8.8.8.8#53
dnsmasq: read /etc/hosts - 5 addresses
wlan0: STA ec:fa:bc:5e:fa:cd IEEE 802.11: associated
wlan0: AP-STA-CONNECTED ec:fa:bc:5e:fa:cd
wlan0: STA ec:fa:bc:5e:fa:cd RADIUS: starting accounting session D056AB159699B069
wlan0: STA ec:fa:bc:5e:fa:cd WPA: pairwise key handshake completed (RSN)
dnsmasq-dhcp: DHCPDISCOVER(wlan0) ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPOFFER(wlan0) 10.33.33.103 ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPDISCOVER(wlan0) ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPOFFER(wlan0) 10.33.33.103 ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPREQUEST(wlan0) 10.33.33.103 ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPACK(wlan0) 10.33.33.103 ec:fa:bc:5e:fa:cd esp8266_5EFACD
wlan0: STA ec:fa:bc:5e:fa:cd IEEE 802.11: disassociated
wlan0: AP-STA-DISCONNECTED ec:fa:bc:5e:fa:cd
wlan0: STA ec:fa:bc:5e:fa:cd IEEE 802.11: disassociated
wlan0: STA ec:fa:bc:5e:fa:cd IEEE 802.11: associated
wlan0: AP-STA-CONNECTED ec:fa:bc:5e:fa:cd
wlan0: STA ec:fa:bc:5e:fa:cd RADIUS: starting accounting session 03AF9DBE0F7F5D0C
wlan0: STA ec:fa:bc:5e:fa:cd WPA: pairwise key handshake completed (RSN)
dnsmasq-dhcp: DHCPDISCOVER(wlan0) ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPOFFER(wlan0) 10.33.33.103 ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPREQUEST(wlan0) 10.33.33.103 ec:fa:bc:5e:fa:cd
dnsmasq-dhcp: DHCPACK(wlan0) 10.33.33.103 ec:fa:bc:5e:fa:cd esp8266_5EFACD
```

Configuration du composant ATECC608A : installation de la clé privée

https://mongoose-os.com/docs/mongoose-os/userguide/security.md#atecc608a
-crypto-chip

L'activation et la configuration du composant ATECC608A est déja **faite** et **bloquée** sur les composants distribués.

Elle autorise :

- ▷ la répartition de la mémoire flash du composant entre les différents stockages, « *slots* » et usages : Slots 0-3 are ECC slots with ECDH enabled. They can be generated on the device or rewritten using key in slot 4, which itself can be reset at any time.
- l'installation à volonté de la clé privée associée à un certificat pour réaliser signature et authentification ;
 Cette possibilité est nécessaire dans le cas d'un composant utilisé à des fins pédagogiques...

Il faut juste une **clé d'installation** qui permet «*d'ouvrir* » l'ATECC608 afin d'y installer la clé privée associée à un certificat.

Pour la création et l'installation de la clé d'installation dans l'ATECC508 :

```
$ openssl rand -hex 32 > slot4.key
$ mos -X atca-set-key 4 slot4.key --dry-run=false
Using port /dev/ttyUSB0
ATECC608A rev 0x6002 S/N 0x0123d4df07023967ee, config is locked, data is locked
Slot 0 is a ECC private key slot
Parsed EC PRIVATE KEY
Data zone is locked, will perform encrypted write using slot 4 using slot4.key
Writing block 0...
SetKey successful.
```

Création et Installation du certificat associé au serveur Web ainsi que de sa clé privée dans l'ATECC608

Pour la création de la clé privée ECC :

xterm

\$ openssl	ecparam	-out	ecc.key.pem	-name	prime256v1	-genkey
±	1		4 1		1	

Pour l'installation de la clé privée ECC dans l'ATECC grâce à la clé d'installation :

Pour la création d'un certificat « auto-signé » pour le serveur Web :

```
xterm
$ openssl req -new -subj "/C=FR/L=Limoges/O=TMC/OU=IOT/CN=mqtt.tmc.com" -sha256
-key ecc.key.pem -text -out ecc.csr.tmpl
$ openssl x509 -in ecc.csr.tmpl -text -out ecc.crt.pem -req -signkey ecc.key.pem
-days 3650
```

On utilise la clé installée dans le «slot 4 » pour autoriser l'installation de cette clé dans le composant.

Vous copierez le fichier contenant le certificat « ecc.crt.pem » dans le sous-répertoire « fs » de votre application et la recompiler/reflasher.

Vous pouvez également installer le certificat dans le « *filesystem* » de l'ESP8266 sans recompilation :

Test de la connexion sécurisée avec authentification au travers de l'ATECC608

```
xterm
n.
  _
$ openssl s_client -connect 10.33.33.146:443
CONNECTED (0000003)
Can't use SSL_get_servername
depth=0 C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
verify error:num=18:self signed certificate
verify return:1
depth=0 C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
verify return:1
Certificate chain
 0 s:C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
  i:C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
Server certificate
    -BEGIN CERTIFICATE----
MIIBlDCCAToCCQCNEPoguhTQgzAKBggqhkjOPQQDAjBSMQswCQYDVQQGEwJGUjEQ
MA4GA1UEBwwHTG1tb2dlczEMMAoGA1UECgwDVE1DMQwwCgYDVQQLDANJT1QxFTAT
BgNVBAMMDG1xdHQudG1jLmNvbTAeFw0xNzEyMDIxOTEwNTRaFw0yNzExMzAxOTEw
NTRaMF1xCzAJBqNVBAYTAkZSMRAwDqYDVQQHDAdMaW1vZ2VzMQwwCqYDVQQKDANU
TUMxDDAKBgNVBAsMA01PVDEVMBMGA1UEAwwMbXF0dC50bWMuY29tMFkwEwYHKoZI
zj0CAQYIKoZIzj0DAQcDQgAEUMuSZezP+mCX2nffWvObSazns/d7lTfoR0HnihgR
75gA7UXpiNrRlMH8t08Y4ntDa9APwk0r4anChvjLyXoGhzAKBggqhkjOPQQDAgNI
ADBFAiEAsIes4Bg6V/Yke9A/VhIJI9e6nnCxSdzi6S+jQy7IiacCIBGnifB1OXvM
NUu0xo+w8ldpmfz+AY6/vK7Yc2JGiQoM
   --END CERTIFICATE-
subject=C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
issuer=C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
No client certificate CA names sent
Peer signing digest: SHA256
Peer signature type: ECDSA
Server Temp Key: ECDH, P-256, 256 bits
SSL handshake has read 732 bytes and written 409 bytes
Verification error: self signed certificate
New, TLSv1.2, Cipher is ECDHE-ECDSA-AES128-GCM-SHA256
Server public key is 256 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
    Protocol
              : TLSv1.2
    Cipher
              : ECDHE-ECDSA-AES128-GCM-SHA256
    Session-ID: 1003B68B0638F14F5535F6D8EDD82D443DF3879DBF7B2B36BE84C94AAF5CD7E6
    Session-ID-ctx:
Master-Key:
44F44612D9745AB4D50E616348C5F7D3FBD10479F4CE959226B18BAA74CFADF3F75A848000C904DF74F44A24464F71D8
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    Start Time: 1606474929
Timeout : 7200 (sec)
    Verify return code: 18 (self signed certificate)
    Extended master secret: yes
```

Le contenu du certificat installé dans l'ATECC608A (qui correspond à celui reçu lors de la connexion) :

```
xterm .
$ openssl x509 -in ecc.crt.pem -text -noout
Certificate:
     Data:
          Version: 1 (0x0)
          Serial Number:
               8d:10:fa:20:ba:14:d0:83
          Signature Algorithm: ecdsa-with-SHA256
          Issuer: C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
          Validity
               Not Before: Dec 2 19:10:54 2017 GMT
Not After : Nov 30 19:10:54 2027 GMT
          Subject: C = FR, L = Limoges, O = TMC, OU = IOT, CN = mqtt.tmc.com
          Subject Public Key Info:
               Public Key Algorithm: id-ecPublicKey
                   Public-Key: (256 bit)
                   pub:
                        04:50:cb:92:65:ec:cf:fa:60:97:da:77:df:5a:f3:
9b:49:ac:e7:b3:f7:7b:95:37:e8:47:41:e7:8a:18:
11:ef:98:00:ed:45:e9:88:da:d1:94:c1:fc:b4:ef:
                        18:e2:7b:43:6b:d0:0f:c2:4d:2b:e1:a9:c2:86:f8:
cb:c9:7a:06:87
                   ASN1 OID: prime256v1
                   NIST CURVE: P-256
     Signature Algorithm: ecdsa-with-SHA256
           30:45:02:21:00:b0:87:ac:e0:18:3a:57:f6:24:7b:d0:3f:56:
           12:09:23:d7:ba:9e:70:b1:49:dc:e2:e9:2f:a3:43:2e:c8:89:
           a7:02:20:11:a7:89:f0:75:39:7b:cc:35:4b:b4:c6:8f:b0:f2:
           57:69:99:fc:fe:01:8e:bf:bc:ae:d8:73:62:46:89:0a:0c
```

Meanwhile on the ESP8266...

Xterm		
\$ mos console		
Using port /dev/ttyUSB0		
[Nov 27 12:05:15.295] mai	in.c:5	Tick uptime: 46.54, RAM: 53600, 43760 free
[Nov 27 12:05:16.295] mai	in.c:5	Tock uptime: 47.54, RAM: 53600, 43760 free
[Nov 27 12:05:16.400] mg_ 10.33.33.254:55318	_lwip_net_if.c:373	0x3ffef094 conn 0x3fff15dc from
[Nov 27 12:05:16.406] mg_:	_net.c:526	0x3ffef094 0x3fff134c 1073680756 0x10
[Nov 27 12:05:16.412] mg_	_net.c:532	0x3fff134c tcp://10.33.33.254:55318
[Nov 27 12:05:16.425] mg_	_ssl_if_mbedtls.c:30	0x3ffef094 ciphersuite:
[Nov 27 12:05:16.485] ATC	CA:16 ECDH gen pubkev	ok
[Nov 27 12:05:16.581] ATC	CA:0 ECDSA sign ok	
[Nov 27 12:05:16.587] mgo	os_mongoose.c:66	New heap free LWM: 38080
[Nov 27 12:05:17.189] ATC	CA:16 ECDH ok	
[Nov 27 12:05:17.203] mgo	os_http_server.c:180	0x3fff134c HTTP connection from
10.33.33.254:55318		
[Nov 27 12:05:17.208] mgo	os_mongoose.c:66	New heap free LWM: 37400
[Nov 27 12:05:17.295] mai	in.c:5	Tick uptime: 48.54, RAM: 53600, 41356 free
[Nov 27 12:05:18.295] mai	in.c:5	Tock uptime: 49.54, RAM: 53600, 41364 free
[Nov 27 12:05:19.295] mai	in.c:5	Tick uptime: 50.54, RAM: 53600, 41364 free
[Nov 27 12:05:20.046] mg_	_ssl_if_mbedtls.c:202	0x3fff134c TLS connection closed by peer
[Nov 27 12:05:20.296] main	in.c:5	Tock uptime: 51.54, RAM: 53600, 43568 free
[Nov 27 12:05:21.295] mai	in.c:5	Tick uptime: 52.54, RAM: 53600, 43568 free

Pour réduire la quantité d'information de déboguage obtenue sur la console vous pouvez changer la valeur de 3 vers 2 dans le manifeste « mos.yml »:

- ["debug.level", 3]